Press Release

GBA2 in the nervous system: lipids and gait imbalance are intertwined

12 Feb 2019 at 17:27

Bonn, February 11, 2020. A collaborative study of scientists from the Institute of Innate Immunity, research center caesar, and DZNE sheds light on the molecular mechanism underlying ataxia and spasticity in patients with mutations in a key enzyme of the glycosphingolipid metabolism.

GBA2 is a pivotal enzyme in lipid metabolism as it regulates the degradation of glucosylceramide. Glucosylceramide is a precursor lipid for other, more complex lipids, which are involved in maintaining key cellular functions. An imbalance in the glucosylceramide lipid homeostasis causes severe diseases that commonly affect the central nervous system. Mutations in the GBA2 gene have been identified in ataxic and spastic patients suffering from autosomal-recessive cerebellar ataxia (ARCA), hereditary spastic paraplegia (HSP), or the Marinesco-Sjögren-like syndrome. These patients exhibit impaired locomotion and neurological abnormalities that develop early in childhood and to date are incurable. The group of Dagmar Wachten could show that the mutations found in patients caused a loss of GBA2 function. Thus, to study the role of GBA2 in controlling locomotion, the researchers used a mouse model that lacks GBA2 (GBA2 knockout-mice) and analyzed the gait properties compared to control mice. Indeed, GBA2 knockout-mice displayed alterations in their gait pattern and some of them displayed a strong defect in locomotion. However, the phenotype did not fully resemble the human phenotype, suggesting species-specific differences in GBA2-controlled glucosylceramide metabolism. To study the defect on a cellular level, the morphology and function of neurons was analyzed in a petri dish. Loss of GBA2 activity had a strong defect on neuronal development and morphology, in particular on the outgrowth of cellular extensions, called neurites, which are important to transmit information in the brain from one neuron to the other. This demonstrated that the lipid homeostasis is crucial for neuronal development and sheds light on how mutations in the GBA2 gene might cause locomotor dysfunction.

Original publication: M.A. Woeste, S. Stern, D.N. Raju, E. Grahn, D. Dittmann, K. Gutbrod, P. Dörmann, J.N. Hansen., S. Schonauer, C.E. Marx, H. Hamzeh, H.G. Körschen, J.M.F.G. Aerts, W. Bönigk, H. Endepols, R. Sandhoff, M. Geyer, T.K. Berger., F. Bradke, und D. Wachten - Species-specific differences in non-lysosomal glucosylceramidase GBA2 function underlie locomotor dysfunction arising from loss-of-function mutations. Journal of Biological Chemistry, doi:10.1074/ jbc.RA118.006311

For further information please contact:

Prof. Dr. Dagmar Wachten
Group Leader
+49-228-9656-311
dwachten@uni-bonn.de

Also interesting:

newstype__press

16 Jan 2022

New Max Planck Institute for Neurobiology of Behavior – caesar

Since January 01st 2022, the research center caesar in Bonn has become the Max Planck Institute for Neurobiology of Behavior – caesar. Scientists from more than 35 nations study how the collective activity of vast numbers of neurons gives rise to the variety of animal behaviors across many species. They are now part of a large network that offers not only new scientific infrastructures, exchange and collaborations, but also a wide range of training and career opportunities. “Bringing the institute into the Max Planck family is an exciting time for us” agree the two directors Jason Kerr and Kevin Briggman.

keepreading

newstype__press

9 Nov 2021

Seeing what they see

keepreading

newstype__news

9 Nov 2021

Seeing what they see

How does a mouse use its eyes to accurately target and catch a fleeing cricket? Researchers at caesar developed a new method to reconstruct the ‘view through the eyes’ of an animal as it detects and tracks its prey.

keepreading