Press Release

GBA2 in the nervous system: lipids and gait imbalance are intertwined

12 Feb 2019 at 17:27

Bonn, February 11, 2020. A collaborative study of scientists from the Institute of Innate Immunity, research center caesar, and DZNE sheds light on the molecular mechanism underlying ataxia and spasticity in patients with mutations in a key enzyme of the glycosphingolipid metabolism.

GBA2 is a pivotal enzyme in lipid metabolism as it regulates the degradation of glucosylceramide. Glucosylceramide is a precursor lipid for other, more complex lipids, which are involved in maintaining key cellular functions. An imbalance in the glucosylceramide lipid homeostasis causes severe diseases that commonly affect the central nervous system. Mutations in the GBA2 gene have been identified in ataxic and spastic patients suffering from autosomal-recessive cerebellar ataxia (ARCA), hereditary spastic paraplegia (HSP), or the Marinesco-Sjögren-like syndrome. These patients exhibit impaired locomotion and neurological abnormalities that develop early in childhood and to date are incurable. The group of Dagmar Wachten could show that the mutations found in patients caused a loss of GBA2 function. Thus, to study the role of GBA2 in controlling locomotion, the researchers used a mouse model that lacks GBA2 (GBA2 knockout-mice) and analyzed the gait properties compared to control mice. Indeed, GBA2 knockout-mice displayed alterations in their gait pattern and some of them displayed a strong defect in locomotion. However, the phenotype did not fully resemble the human phenotype, suggesting species-specific differences in GBA2-controlled glucosylceramide metabolism. To study the defect on a cellular level, the morphology and function of neurons was analyzed in a petri dish. Loss of GBA2 activity had a strong defect on neuronal development and morphology, in particular on the outgrowth of cellular extensions, called neurites, which are important to transmit information in the brain from one neuron to the other. This demonstrated that the lipid homeostasis is crucial for neuronal development and sheds light on how mutations in the GBA2 gene might cause locomotor dysfunction.

Original publication: M.A. Woeste, S. Stern, D.N. Raju, E. Grahn, D. Dittmann, K. Gutbrod, P. Dörmann, J.N. Hansen., S. Schonauer, C.E. Marx, H. Hamzeh, H.G. Körschen, J.M.F.G. Aerts, W. Bönigk, H. Endepols, R. Sandhoff, M. Geyer, T.K. Berger., F. Bradke, und D. Wachten - Species-specific differences in non-lysosomal glucosylceramidase GBA2 function underlie locomotor dysfunction arising from loss-of-function mutations. Journal of Biological Chemistry, doi:10.1074/ jbc.RA118.006311

For further information please contact:

Prof. Dr. Dagmar Wachten
Group Leader
+49-228-9656-311
dwachten@uni-bonn.de

Also interesting:

newstype__press

26 Jul 2024

New Mathematical Framework to Understand Dynamics of Natural Systems

Researchers at the new Max Planck Institute for Neurobiology of Behavior - caesar have been able to show for the first time that individual migrating cells are able both to develop a robust memory for the direction of migration and to react to short-term input changes in their environment at the same time.

keepreading

newstype__news

26 Jul 2024

New Mathematical Framework to Understand Dynamics of Natural Systems

A team of researchers has developed a new mathematical framework that describe, for the first time, how long transient behaviors might occur in complex systems. They introduce ghost channels and ghost cycles as novel objects that explain how natural systems can be stable over prolonged period of time, yet still be able to rapidly switch to another state. This might help us understand tipping cascades, such as those affecting biodiversity or the consequences of ice melt in the Arctic, but also neuronal dynamics that governs how we encode taste, for example.

keepreading

newstype__news

31 May 2024

Bonn Science Night 2024 - we were there!

We participated in the local Bonn Science Night on May 17, 2024. We introduced our research mission and, together with the Max Planck Institute for Radioastronomy, showcased basic research at the Max Planck Society. We had a fantastic time and are grateful to our many visitors for their interest and very positive feedback!

keepreading