Press Release

Nano walker follows a path of light

25 Mar 2019 at 19:16

Bonn, March 25th, 2019. Research into synthetic locomoting systems on a nanometer scale is currently of great interest. In particular, scientists are developing tiny transport systems, which might be utilized to transport drugs and active substances inside cells or as part of artificial nanofactories. Currently, researchers evaluate a variety of systems to better understand which locomotive processes, methods of control and energy supply systems could be used.

Now, scientists Prof. Michael Famulok (Max Planck Fellow at research center caesar) and Julián Valero, in a joint cooperation with the Japanese research group of Prof. Hiroyuki Asanuma, have developed a new type of molecular walker. The walker can be controlled by light at different wavelengths. It is made of DNA and moves by utilizing the chemical interactions of molecules. It is called a “walker” since it ambulates on two legs, step by step on a defined path, through the nano world. What makes the walker special is inside its legs: they contain azobenzene derivatives, which can be manipulated by light pulses at different wavelengths. By irradiating the walker with a particular sequence of different wavelengths, its movements can be controlled.

This new design of a nanowalker that is exclusively controlled by light will now be presented in the journal “Angewandte Chemie”.

For further information please contact:

Also interesting:

newstype__press

26 Jul 2024

New Mathematical Framework to Understand Dynamics of Natural Systems

Researchers at the new Max Planck Institute for Neurobiology of Behavior - caesar have been able to show for the first time that individual migrating cells are able both to develop a robust memory for the direction of migration and to react to short-term input changes in their environment at the same time.

keepreading

newstype__news

26 Jul 2024

New Mathematical Framework to Understand Dynamics of Natural Systems

A team of researchers has developed a new mathematical framework that describe, for the first time, how long transient behaviors might occur in complex systems. They introduce ghost channels and ghost cycles as novel objects that explain how natural systems can be stable over prolonged period of time, yet still be able to rapidly switch to another state. This might help us understand tipping cascades, such as those affecting biodiversity or the consequences of ice melt in the Arctic, but also neuronal dynamics that governs how we encode taste, for example.

keepreading

newstype__news

31 May 2024

Bonn Science Night 2024 - we were there!

We participated in the local Bonn Science Night on May 17, 2024. We introduced our research mission and, together with the Max Planck Institute for Radioastronomy, showcased basic research at the Max Planck Society. We had a fantastic time and are grateful to our many visitors for their interest and very positive feedback!

keepreading