Press Release

Cells decide their fate collectively

16 Feb 2021 at 10:00

Bonn, 16.02.2021. It is one of the great mysteries in biology - from apparently uniform stem cells, a plethora of diverse, specialized cell types arise through so called differentiation processes. Although we know that the special functions of the cells are founded in the genes, one central question still remains open: How is this differentiation process controlled? What ensures that the vital proportions of cell types are present within the population?

"The current theories of cell differentiation assume that the cell fate is determined on the level of single cells. But we see evidence for a much more complex system," says Dr. Aneta Koseska, Lise-Meitner research group leader at research center caesar. In her latest findings, which are being published in the journal “Development” and selected as a “Research highlight”, she outlines a novel theory. According to Dr. Koseska, cells do not determine their identity individually, but rather, the entire population of cells in the collective controls which specializations individual cells should form and in which proportions. "The cells of a mammalian embryo are not isolated from each other. They communicate with each other through various molecules and form a unified system. Thus, as the population grows and cells divide, the system determines at which point in time differentiation must occur in a self-organized manner," Dr. Koseska said.

Using simulations, the group of Dr. Aneta Koseska, together with Dr. Christian Schroeter (Max Planck Institute for Molecular Physiology, Dortmund, Germany) showed that the specialization of a single cell depends on the other cells in the population. If one disturbed the balance of cell types in the simulation - for example, by removing one cell type completely - the collective of cells restored the original proportions. The scientists therefore propose that cell fate decision-making and active maintenance of the most favorable population composition is based on a communication mechanism among cells, rather than on individual cell decisions.

This new theory opens the door for further studies. Dr. Koseska is confident: "Our theory provides direct predictions of the underlying mechanism that can and must now be further investigated and experimentally validated."


Publication:
Stanoev, A., Schröter, C., Koseska, A. (2021). Robustness and timing of cellular differentiation through population-based symmetry breaking. Development 148, dev197608.

Research highlight


Press contact
Julia Schlee
julia.schlee@caesar.de
Center of Advanced European Studies and Research,
D-53175 Bonn, Germany.



About research center caesar
caesar is a neuroethology institute located in Bonn that studies how the collective activity of the vast numbers of interconnected neurons in the brain gives rise to the plethora of animal behaviors. Our research spans a large range of scales from the nano-scale imaging of brain circuitry, to large-scale functional imaging of brain circuitry during behavior, to the quantification of natural animal behaviors.

For further information please contact:

Julia Schlee
Public Outreach Officer
+49-228-9656-138
julia.schlee@mpinb.mpg.de

Also interesting:

News

8 Oct 2024

New calcium indicator enables faster and more precise measurements in C. elegans

Researchers at the Max Planck Institute for Neurobiology of Behavior – caesar have successfully adapted the genetically encoded calcium indicator GCaMP8f for use in the model organism Caenorhabditis elegans. This advancement allows for improved speed and precision in measuring intracellular calcium dynamics in muscles and neurons. Led by Dr. Monika Scholz, the team developed new strains of C. elegans that express GCaMP8f, opening up possibilities for more detailed studies of neuronal activity and muscle movements.

Keep reading

News

18 Sep 2024

Postdoc Appreciation Week - F*ck Up Night Recap

Our latest F*ck Up Night as part of Postdoc Appreciation Week brought together researchers to openly share their stories of failure and growth. With engaging talks and lively discussions, the event was a true celebration of resilience in science. Read more about the inspiring evening and the lessons learned!

Keep reading

Press Release

26 Jul 2024

New Mathematical Framework to Understand Dynamics of Natural Systems

Researchers at the new Max Planck Institute for Neurobiology of Behavior - caesar have been able to show for the first time that individual migrating cells are able both to develop a robust memory for the direction of migration and to react to short-term input changes in their environment at the same time.

Keep reading