Press Release

Cannibal worms spare their own brood - New caesar research group investigates self-recognition systems in nature

22 Jan 2021 at 16:26

Bonn, January 21st, 2021. Cannibalism is a brutal behavior that occurs in nature regularly. The nematode Pristionchus pacificus devours whatever gets in front of its teeth. This includes other nematodes, and even members of its own species.

Neurobiologist Dr. James Lightfoot is fascinated by these animals, which are only about 1 mm in size. In his experiments with the predatory worms, he made a surprising discovery. Although P. pacificus is not choosy when it comes to its prey, the predator spares its own offspring. How does such a simple organism, whose whole nervous system has only about 300 neurons, manage the complex task of distinguishing its own descendants from other worms?

Dr. Lightfoot will focus on this question at caesar, starting in February 2021. His new group, which is called "Self-recognition and cannibalism", will focus on the self-recognition system in P. pacificus. "Through our research, we hope to better understand the basic principles and molecular mechanisms behind self-recognition behavior," Lightfoot says. That's because, he says, despite the many self-recognition systems already known in nature, surprisingly little is known about the molecular and physiological mechanisms behind these systems, especially when it comes to their role in behavior.

The phenomenon of biological self-recognition has fascinated scientists for decades. It is ubiquitous in nature, and involved in a wide variety of different processes. The spectrum is broad: Self-recognition controls competitive and cooperative behavior in animals, but is also found in the most basic processes including the immune response in vertebrates. Self-recognition systems are also thought to have been essential to evolution, as single-celled organisms became multicellular organisms.
The self-recognition system of P. pacificus has not been observed in any other nematode to date. Using molecular, genetic and neurobiological tools, Dr. Lightfoot and his team will investigate the self-recognition system from the genetic to the behavioral level. Their advantage: nematodes are ideally suited as model organisms for neurobiological research due to their low anatomical complexity.

Dr. Lightfoot is excited to commence his work: "At caesar, I am looking forward to the extraordinary neurobiological expertise of my colleagues and the excellent facilities available. We can make good use of both for research into the self-recognition system."



Press contact

Sebastian Scherrer
sebastian.scherrer@caesar.de
Center of Advanced European Studies and Research,
D-53175 Bonn, Germany.



About research center caesar
The center of advanced european studies and research (caesar) is one of more than 80 institutes of the Max Planck Society, an independent, non-profit organization in Germany. It is part of a cluster for neurosciences in the Bonn-Cologne region and has multiple ties with the University of Bonn and University of Cologne. caesar is a neuroethology institute that studies how the collective activity of the vast numbers of interconnected neurons in the brain gives rise to the plethora of animal behaviors.

For further information please contact:

Julia Schlee
Public Outreach Officer
+49-228-9656-138
julia.schlee@mpinb.mpg.de

Also interesting:

News

8 Oct 2024

New calcium indicator enables faster and more precise measurements in C. elegans

Researchers at the Max Planck Institute for Neurobiology of Behavior – caesar have successfully adapted the genetically encoded calcium indicator GCaMP8f for use in the model organism Caenorhabditis elegans. This advancement allows for improved speed and precision in measuring intracellular calcium dynamics in muscles and neurons. Led by Dr. Monika Scholz, the team developed new strains of C. elegans that express GCaMP8f, opening up possibilities for more detailed studies of neuronal activity and muscle movements.

Keep reading

News

18 Sep 2024

Postdoc Appreciation Week - F*ck Up Night Recap

Our latest F*ck Up Night as part of Postdoc Appreciation Week brought together researchers to openly share their stories of failure and growth. With engaging talks and lively discussions, the event was a true celebration of resilience in science. Read more about the inspiring evening and the lessons learned!

Keep reading

Press Release

26 Jul 2024

New Mathematical Framework to Understand Dynamics of Natural Systems

Researchers at the new Max Planck Institute for Neurobiology of Behavior - caesar have been able to show for the first time that individual migrating cells are able both to develop a robust memory for the direction of migration and to react to short-term input changes in their environment at the same time.

Keep reading